Differentiation: Standard Derivatives

In this worksheet we will first give a table of standard derivatives and then give a series of examples to show how the table is used. Note that in the table a will stand for a constant.

Some Common Derivatives

	$f(x)$	$f^{\prime}(x)$	Comments
(1)	a	0	
(2)	x^{n}	$n x^{n-1}$	Here we must have $x \neq 0$ if $n<1$
(3)	$e^{a x}$	$a e^{a x}$	
(4)	$\ln (a x)$	$\frac{1}{x}$	Here we must have $a x>0$
(5)	$\sin (a x)$	$a \cos (a x)$	
(6)	$\cos (a x)$	$-a \sin (a x)$	Note the change of sign
(7)	$\tan (a x)$	$a \sec ^{2}(a x)$	Here $a x \neq \frac{\pi}{2}+k \pi, k \in \mathbb{Z}$

Example 1: Find the derivative of $f(x)=5$.
Solution 1: Since 5 is a constant, we can use Rule (1) to obtain $f^{\prime}(x)=0$.
Example 2: Find the derivative of $f(x)=e^{\cos (2)}$.
Solution 2: Note that there is no x in $e^{\cos (2)}$, so it is still just a constant.
So we can can again use Rule (1) to obtain $f^{\prime}(x)=0$.
Example 3: Find the derivative of $f(x)=x^{5}$.
Solution 3: Here the function is of the form x^{n} with $n=5$.
So we can use Rule (2) to obtain $f^{\prime}(x)=5 x^{5-1}=5 x^{4}$.
Example 4: Find the derivative of $f(x)=x^{-3}$ if $x \neq 0$.
Solution 4: Here the function is of the form x^{n} with $n=-3$ and $x \neq 0$.
So we can again use Rule (2) to obtain $f^{\prime}(x)=-3 x^{-3-1}=-3 x^{-4}$.
Example 4: Find the derivative of $f(x)=x^{\sin (3)}$ if $x \neq 0$.
Solution 4: Since $\sin (3)$ is just a number, the function is of the form x^{n} with $n=\sin (3)$ and $x \neq 0$. So we can again use Rule (2) to obtain $f^{\prime}(x)=\sin (3) x^{\sin (3)-1}$.

Example 5: Find the derivative of $f(x)=e^{2 x}$.
Solution 5: The function is of the form $e^{a x}$ with $a=2$.
So we can use Rule (3) to obtain $f^{\prime}(x)=2 e^{2 x}$.
Example 6: Find the derivative of $f(x)=e^{-x}$.
Solution 6: The function is of the form $e^{a x}$ with $a=-1$.
So we can again use Rule (3) to obtain $f^{\prime}(x)=-1 e^{-x}=-e^{-x}$.
Example 7: Find the derivative of $f(x)=\ln (8 x)$ where $x>0$.
Solution 7: The function is of the form $\ln (a x)$ with $a=8$ and $a x>0$.
So we can use Rule (4) to obtain $f^{\prime}(x)=\frac{1}{x}$.
Example 8: Find the derivative of $f(x)=\ln \left(-\frac{7}{2} x\right)$ where $x<0$.
Solution 8: The function is of the form $\ln (a x)$ with $a=-\frac{7}{2}$ and $a x>0$.
So we can again use Rule (4) to obtain $f^{\prime}(x)=\frac{1}{x}$.
Example 9: Find the derivative of $f(x)=\sin (6 x)$.
Solution 9: The function is of the form $\sin (a x)$ with $a=6$.
So we can use Rule (5) to obtain $f^{\prime}(x)=6 \cos (6 x)$.
Example 10: Find the derivative of $f(x)=\sin \left(-\frac{3}{2} x\right)$.
Solution 10: The function is of the form $\sin (a x)$ with $a=-\frac{3}{2}$.
So we can again use Rule (5) to obtain $f^{\prime}(x)=-\frac{3}{2} \cos \left(-\frac{3}{2} x\right)^{2}$.
Example 11: Find the derivative of $f(x)=\cos (11 x)$.
Solution 11: The function is of the form $\cos (a x)$ with $a=11$.
So we can use Rule (6) to obtain $f^{\prime}(x)=-11 \sin (11 x)$.
Example 12: Find the derivative of $f(x)=\cos (-\pi x)$.
Solution 12: The function is of the form $\cos (a x)$ with $a=-\pi$.
So we can again use Rule (6) to obtain $f^{\prime}(x)=-(-\pi) \sin (-\pi x)=\pi \sin (-\pi x)$.
Example 13: Find the derivative of $f(x)=\tan (9 x)$ where $9 x \neq \frac{\pi}{2}+k \pi, k \in \mathbb{Z}$.
Solution 13: The function is of the form $\tan (a x)$ with $a=9$ and $a x \neq \frac{\pi}{2}+k \pi, k \in \mathbb{Z}$.
So we can use Rule (7) to obtain $f^{\prime}(x)=9 \sec ^{2}(9 x)$.
Example 14: Find the derivative of $f(x)=\tan \left(-\frac{9}{8} x\right)$ where $-\frac{9}{8} x \neq \frac{\pi}{2}+k \pi, k \in \mathbb{Z}$.
Solution 14: The function is of the form $\tan (a x)$ with $a=-\frac{9}{8}$ and $-\frac{9}{8} x \neq \frac{\pi}{2}+k \pi, k \in \mathbb{Z}$.
So we can again use Rule (7) to obtain $f^{\prime}(x)=-\frac{9}{8} \sec ^{2}\left(-\frac{9}{8} x\right)$.

